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1. INTRODUCTION 
This technical report details Wayne State University’s submission for the 2009 Intelligent 

Ground Vehicle Competition.  This is Wayne State’s first submission to the IGVC, which we all 

hope will only be the first of many entries in future years.  Our team draws on students mainly 

from Computer Engineering but we have also had some assistance from students from 

Mechanical Engineering. 

Section 2.0 describes the hardware architecture that we used including the electronics, electrical 

system, actuators, sensors, and computers.  Section 3.0 describes our approach to signal 

processing, path following, and the control loop for moving the platform.  Section 4.0 describes 

our system integration plan. 

2. HARDWARE OVERVIEW 

2.1 Introduction 

This section describes the hardware used in our entry.  Section 2.2 describes the platform.  

Section 2.3 describes the electronics and sensors we chose to use.  Section 2.4 describes the 

electrical system.  Section 2.5 describes the actuator that we are using. 

2.2 Platform 

The platform that we used for our entry started off as a wheelchair.  Figure 1 is a picture of the 

platform equipped with some electronics.  It was donated to WSU by Turing Associates, Inc.  It 

is a skid-steer design with a rear passive wheel. 

 



 

Figure 1: Our modified wheelchair base during the build process. 

2.3 Electronics and Sensors 

We are using one laptop, a Gateway tablet PC, that has been loaded with Ubuntu 8.04.  This 

laptop does not contain any serial ports.  A device made by Quatech accepts a USB connection in 

and provides eight RS232 ports out, each capable of data rates up to 921 Kbps.  The devices that 

we have plugged into the RS232 box are an inertial measurement unit (IMU), a global 

positioning system (GPS), an RS232 connection for the Sony pan/tilt/zoom camera, and for 

communicating with the Roboteq motor controller. 

We are using passive optics for our obstacle detection, which is described in more detail in our 

software overview.  The Sony camera outputs an NTSC signal which is fed into a PCMCIA 

frame grabber from ImperX to the laptop.  The overall view of our electronics is shown in Figure 

2.   

 



 

Figure 2: Architecture of our computer and sensors 

2.4 Electrical System 

There are two 12V batteries in the base of the wheelchair.  They are connected in parallel to 

double the amp hours that are available.  There is a connection coming off of one battery to 

power the equipment on top of the platform. 

To avoid excessive power draw by the two motors, a 30A fuse is installed in series with the 

emergency stop.  If the power consumption by any of the devices exceeds that limit, the fuse will 

disconnect the power supply to the platform.  The hardware emergency stop button can also be 

used to quickly disconnect power to the platform and all devices, in case of abnormal operation. 

The sensors being used can be divided into two groups based on their power consumption.  The 

GPS receiver and the IMU both require 9VDC and the Sony camera requires 12 VDC.  In order 

to supply this range, a DC-DC converter is used that accepts 6-30 VDC in and is able to step that 

voltage down to three separate outputs. 



 

Figure 3: Electronic wiring diagram of our IGVC platform 

2.5 Actuators 

We are using a Situational Awareness Mast from GeoSystems, Inc. to mount our camera and 

GPS receiver on.  This is a zipper mast that extends up to a little over three meters in the air.  

Figure 4 shows the mast slightly extended.  The three sides join together when driven by the 

motor and each side coils down when collapsed.  We are not able to drive the robot when the 

mast is extended over half a meter.  If the platform drops into a hole, the mast can collapse. 

 

 



 

Figure 4: The SAM, Situational Awareness Mast, which we are using to mount our camera and 

GPS receiver on. 

3. SOFTWARE OVERVIEW 

3.1 Introduction 

This section describes the software architecture that we used for our entry.  Section 3.2 describes 

the signals we are processing.  Section 3.3 details the approach we used to handle JAUS 

communications.  Section 3.4 describes our algorithm for lane detection and path following.  

Section 3.5 summarizes our control loop for autonomous navigation. 

3.2 Signal Processing 

Our approach to reading data from each of the sensors was to use shared memory on the laptop.  

The program that reads from each device spawns a thread for each device and writes the current 

reading to its area in shared memory.  There is a location in shared memory for image data, GPS 

data, IMU data, and feedback from the motor controller.  The module that does the path planning 

reads this data in and then acts upon it.  There is a mutex that has to be acquired by either the 

process doing the reading or the writing of the data in shared memory.  This protects the data 

from becoming corrupted. 



The images from the camera come in at 640x480 resolution.  The pan, tilt, and zoom functions of 

the camera are available through the RS232 interface but right now, we are not using them in our 

control loop. 

The Trimble GPS outputs NMEA data.  The NMEA sentences that we are processing are GGA 

and RMC.  The GGA sentence gives latitude and longitude.  The RMC sentence gives us fix 

information.  The data rate of the GPS is 1 Hz. 

The data that we are reading from the IMU are the acceleration, angular rate, and Euler angles 

(pitch, roll, and yaw).   The data rate of the IMU is around 15 Hz. 

The data that we are reading back from the Roboteq motor controller are amps consumed by 

each motor, current battery voltage, and the relative encoder feedback from each motor.   

3.3 JAUS 

In accordance with IGVC’s JAUS Challenge requirements, the platform will respond to a 

periodic status and position requests from the Judge’s COP. This requires the updated JAUS 

standards published by SAE, i.e. the JAUS Transport Specification (AS5669A), the JAUS Core 

Service Set (AS5710) and the Mobility Service Set (AS6009) compliant. We originally planned 

to use OpenJAUS that is a free source robotics SDK for our JAUS implementation, but the 

available version 3.3.0 of OpenJAUS is not SAE AS5669A or AS5710 compliant. After more 

research, we decided to use Jr Middleware that is a SAE AS-4 (JAUS) AS5669 compliant 

software development tool for the platform.  The platform uses Ethernet Wireless UDP 

communication, and the IP address 192.168.1.200 is used to the platform for testing. The JAUS 

ID is 200-1-1, only one component is used for the system. Figure 5 shows our JAUS system 

architecture and the system communication with JAUS Validation Tool.  



 

Figure 5: This shows the architecture of JAUS implementation and the system communication 

with the JAUS validation tool. 

3.4 Path Following 

We trained a supervised learning algorithm to recognize lanes in the video stream.  Our approach 

uses a graph-based image segmentation algorithm [1] that segments the image into regions of 

similar color and texture.  An example of the segmented image is shown in Figure 4.  Once we 

have a segmented image, we run statistics on each region.  These statistics include area, 

perimeter, length of the major axis, and the length of the minor axis.  We collected data of 

images with lanes, then hand-labeled the regions as a dashed lane, a solid lane, or neither.  These 

images were then trained using a naïve Bayes classifier to recognize the presence of a lane in the 

video stream.   



 

Figure 6: The image on the left is the result of doing a graph‐based image segmentation of the 

image on the right.  The green overlay on the input image is derived from the regions found 

on the left. 

3.5 Control Loops 

The control loop for the navigation challenge first requires the input of the waypoints.  Our 

software grabs an image from the camera, segments it, checking for obstacles.  It next grabs the 

current latitude and longitude from the GPS.  If the path is clear, it moves toward the waypoint.  

If an obstacle is present, the platform attempts to navigate around the obstacle.  Once the 

obstacle has been cleared, the current GPS location is obtained and a new path is calculated.  

This is repeated until the goal location has been reached. 

The control loop for the autonomous challenge is similar to the control loop for the navigation 

challenge except here, once an image has been segmented; we pass it through our naive Bayes 

classifier for lane detection.  The control module will align the robot so that a lane is to the left 

and to the right.  Once the lanes have been found, the platform will move forward, checking for 

obstacles. 

In addition to the hardware emergency stop described earlier, there is also a wireless emergency 

stop.  There is a separate control box that houses a microcontroller and a ZigBee module.  Once 

power has been applied to the circuit, the microcontroller starts transmitting a message that is 

received by a microcontroller that we have connected to the motor controller.  If this message 



stream is not received by the microcontroller on the platform, the microcontroller will send a 

command to the motor controller ceasing all movement. 

4. SYSTEM INTEGRATION 

4.1 Introduction 

This section describes how our system operates as an entire entity.  We describe how our 

platform is able to handle inclines and obstacles. We also touch briefly on our algorithm for GPS 

waypoint navigation.  

4.2 System Integration. 

We have set the current limit of our motor controller to 30A.  This setting does not permit the 

platform to travel faster than the 5 MPH limit as set by the competition rules.  Our platform is 

able to handle ramp climbing.  We have tested this out on thirty-degree ramps without any 

trouble.  This was problematic prior to setting the current limit setting on our motor controller.  

We would pop fuses if the incline was too steep or the platform became stuck in mud.  Our 

platform is also able to handle potholes without any trouble.  We tested on potholes that were 

three feet in diameter and four inches deep. 

Our platform is able to detect obstacles from ten meters away.  At the time of this writing, our 

code is still in development but we have been experimenting with using the segmentation code to 

segment out the scene, then on items which look like obstacles.  Figure 7 shows a construction 

scene that has been segmented out.  Our goal when we started this project was use only 

monocular vision for the detection of obstacles.  Although we feel this is still possible, we might 

end up adding a SICK laser scanner to the front of our platform and try doing monocular vision 

only in next year’s entry.   



 

Figure 7: A construction scene with obstacles that has been segmented out using the graph‐
based image segmentation code. 

Our platform is able to react instantaneously to the hardware emergency stop being pressed.  We 

are able to detect an incline within one second by reading the pitch value from the IMU and 

detecting that the current draw from the motors has increased by reading the data from the motor 

controller. 

We recently replaced the batteries in our platform.  The platform is around ten years old and the 

batteries had never been replaced.  We have been testing our code each day for several weeks, at 

least several hours each day, and we have not had to recharge the batteries yet.  Initially, we had 

thought to use a separate power supply on top of the platform to power the electronics but the 

lithium-ion batteries would last for approximately one hour before needing to be recharged.  We 

were concerned that using the power supply from the base would introduce power spikes that 

would cause unpredictable results with our sensors.  This has turned out to not be the case. 

As of the time of this writing, our waypoint navigation code has not been finalized yet.   The 

preliminary results of our code are that we are able to navigate to waypoints with approximately 

two meter accuracy.  We also have not yet addressed the more complex obstacles that we will 

encounter such as switchbacks and dead ends. 
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6. APPENDIX 

A. Cost Breakdown 

Item   Cost  
Wheelchair Platform (donated)    
Roboteq AX3500 Controller   $          395.00  
Sony EVI‐D70 PTZ Camera   $          875.00  
ImperX VCE‐Pro Framegrabber   $          599.00  
Microstrain 3DM‐GX1 IMU   $      1,495.00  
Trimble AgGPS    $      5,000.00  
Robotics Group Inc. DC‐DC 
Converter   $          295.00  
Quatech USB to RS232   $          800.00  
     
Total   $      9,459.00  

 

B. Man Hours 

Group  Person  Man Hours 
JAUS  Sam  200
   Yusuf  40
   Shankar  80
Hardware  Ali  200
   Ajay  40
Computer 
Vision  Prem  40
   Shawn  200
        
Total     800

 

 

 

 


